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Abstract. We address the problem of image feature learning for scene
text recognition. The image features in the state-of-the-art methods are
learned from large-scale synthetic image datasets. However, most meth-
ods only rely on outputs of the synthetic data generation process, namely
realistically looking images, and completely ignore the rest of the process.
We propose to leverage the parameters that lead to the output images to
improve image feature learning. Specifically, for every image out of the
data generation process, we obtain the associated parameters and render
another “clean” image that is free of select distortion factors that are ap-
plied to the output image. Because of the absence of distortion factors,
the clean image tends to be easier to recognize than the original image
which can serve as supervision. We design a multi-task network with an
encoder-discriminator-generator architecture to guide the feature of the
original image toward that of the clean image. The experiments show
that our method significantly outperforms the state-of-the-art methods
on standard scene text recognition benchmarks in the lexicon-free cate-
gory. Furthermore, we show that without explicit handling, our method
works on challenging cases where input images contain severe geometric
distortion, such as text on a curved path.

Keywords: Scene text recognition, deep learning, neural networks, fea-
ture learning, synthetic data, multi-task learning

1 Introduction

Scene text recognition, the problem of recognizing text in natural scene images,
has always occupied a special place in image understanding and Computer Vi-
sion, because of the importance of text in the way that people communicate with
each other. It has a wide range of practical applications including autonomous
driving, robots and drones, mobile e-commerce, and helping visually impaired
people. Image features play a crucial role in scene text recognition. Early meth-
ods use hand-crafted features and break the problem into sub-problems such as
character detection [34,36,38]. The state-of-the-art methods use convolutional
neural networks and train from images directly to text in an end-to-end fashion
[17,27].
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Fig. 1: The proposed text feature learning framework. The blue shaded box at the top
contains a generic text recognition pipeline, with an input image x going through a
feature encoder E and a text decoder T, resulting in a predicted text string . By a
synthetically-supervised approach, we use the true text label y to render not only a
noisy input image x, but also a clean image X with the canonical rendering parameter z.
The encoded feature f=F(x) is trained to match its clean counterpart f=F(), as well
as to reproduce the clean image through an image generator G. Adversarial matching
losses are imposed on both image and feature domains by discriminators D; and Dp.

One of the key factors in the state-of-the-art methods is the use of large-scale
synthetic image datasets to train convolutional neural networks [17]. The ability
to use synthetic data is special in the text recognition problem. Thanks to the fact
that text is not a natural object, we are able to generate an unlimited amount of
labeled images that resemble real-world images. In the generation process, we can
manipulate nuisance factors such as font, lighting, shadow, border, background,
image noise, geometric deformation, and compression artifacts. As a result, image
features trained on synthetic data with these factors will be robust to their
variations, leading to a significant improvement of recognition accuracy.

There is a fundamental difference between real images and synthetic images
which is that synthetic images are obtained through a process that is controllable
to a Machine Learning algorithm. This process provides not only an unlimited
amount of training data (images and labels) but also parameters that are associ-
ated with the data. This difference has been completely ignored in the literature.
For instance, most state-of-the-art methods follow a simple training procedure
and only exploit the abundance of synthetic data to train image features. The
key idea of this work is that we can leverage the difference between real and syn-
thetic images, namely the controllability of the generation process, and control
the generation process to generate paired training data. Specifically, for every
synthetic image out of the generation process with aforementioned nuisance fac-
tors, we obtain the associated rendering parameters, manipulate the parameters,
and generate a corresponding clean image where we remove part or all of the
nuisance factors. For instance, the original image may have a perspective warp
and the clean image does not contain any geometric deformation. Because of
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the absence of nuisance factors, the text in the clean image is generally easier to
recognize and can therefore serve as supervision. By training on synthetic images
both with and without nuisance factors, we expect to learn a more robust text
recognition feature that is invariant to undesired nuisance factors.

The overall framework of our proposed method, which we call synthetically
supervised feature learning, is shown in the Fig. 1. We use cleans image as su-
pervision at both the pixel level and the feature level in a generative way, and
design auxiliary training losses that can be combined with conventional training
objectives of any deep network model for text recognition. We follow two princi-
ples — invariance and completeness — to learn a good text feature encoder F(-),
which usually consists of the first several convolutional layers in the recognition
model. Feature invariance requires that the encoder extracts the same feature
for any input image x and its corresponding clean image X: F(x) = E(X). Fea-
ture completeness requires all text label information to be contained in E(x). It
is equivalent to require the existence of an inverse mapping, or an image gen-
erator G(-), that can transform the encoded feature back to the deterministic
clean image: G(E(x)) = X. Since the supervision from the clean image is applied
on image and feature domains, it is tempting to employ generative adversarial
networks (GANS) [7] to help the feature learning in addition to the use of basic
{1 or {5 losses. Therefore, we also explore using discriminators D;(-) and Dp(-)
to encourage the generated image and feature to be more similar to their clean
counterparts, respectively. Our experiment results show that, with the right com-
bination, the invariance, completeness and adversarial losses all contribute to a
text feature that is more robust to nuisance factors.

The main contributions of this paper are threefold: 1. We propose to lever-
age the controllability of the data generation process and introduce clean images
that are free byproducts as the auxiliary training data for scene text recognition.
Otherwise, our method does not require information of other nuisance factors in
the generation process which is less structured and harder to use. We propose
a general algorithm to use clean images as additional supervision that can be
applied to most deep learning based text recognition models. 2. We design a
novel scene text recognition algorithm that learns a descriptive and robust text
representation (image feature) through image generation, feature matching and
adversarial training. We conduct a detailed ablation study by examining the
effectiveness of each proposed component. 3. Our method achieves the state-of-
the-art performance on various scene text recognition benchmarks and signifi-
cantly outperforms the state-of-the-art in the lexicon-free category. Moreover,
Our approach generalizes to irregular text recognition, such as perspective text
and curved text recognition.

2 Related Work

Scene text recognition is an important area in image understanding and Com-
puter Vision. There is a sizable body of literature on this topic. We will only
discuss closely related work here and refer the reader to recent surveys [34, 36,
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38] for more thorough expositions. [32, 14, 15] are among the early works in using
deep convolutional neural networks as image features for scene text recognition.
[17] formulates the problem as a 90K-class convolutional neural network, where
each class corresponds to an English word. One of the key contributions of [17]
is that it proposes a large-scale synthetic dataset as existing image datasets
are not sufficient to train deep convolutional neural networks. This synthetic
dataset is later adopted by follow-up works. To overcome the problem of us-
ing a fixed lexicon in training, [16] proposes a joint graphical model and [27]
propose an end-to-end sequence recognition network where images and texts
are separately encoded as patch sequences and character sequences. A lexicon
can be introduced at the test time if necessary. [20,4,5] are among the latest
approaches which adopt attention-based networks to handle complicated text
distortion and low-quality images. Our method follows the general direction of
using convolutional neural networks and sequence recognition for the problem.
Our contribution lies in using the rendering parameters in the synthetic data
generation process to obtain new clean reference images. We leverage both orig-
inal images and clean images to guide image feature learning. To the best of our
knowledge, this is the first work in scene text recognition to use auxiliary refer-
ence images to improve feature learning, sharing similar philosophy with other
generative multi-task learning works [35, 30,24]. We show that our method can
correct geometric distortion present in input images. This is related to [28] which
uses a spatial transformer network to rectify the image before the recognition
pipeline. However, [28] employs a hand-designed architecture that only works for
geometric distortion while our method applies to arbitrary distortion in a unified
way. As long as the synthetic data generation process can simulate a distortion,
our method can potentially correct it through feature learning.

3 Method

We build a synthetically-supervised feature learning framework for text recogni-
tion as shown in Fig. 1. It consists of a text image renderer R, a feature encoder
E, a text decoder T, an image generator GG, and two discriminators D; and Dp.
We discuss each of these components and their interactions in the following.
Renderer: We use a standard text renderer R to synthesize a text image
x=R(y,z) with a text string y and rendering parameters z. z describes how
nuisance factors are added in the rendered image, and is drawn randomly from a
distribution covering the combinations of various factors including font, outline,
color, shading, background, perspective warping, and imaging noise. The clean
image X for text y is synthesized as R(y,Z) by fixing the rendering parameters
to a canonical value z. In our case, z corresponds to a standard font and zero
noise perturbation, yielding a clean image X as illustrated in Fig. 1. The renderer
provides training triplets {(x,X,y)} in our framework, and it is not trainable.
Encoder and Text Decoder: The encoder E takes an input image x to
extract its image feature f, which is further fed into the text decoder T' to pre-
dict the text character sequence y. The cross-modal encoder-decoder structure
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represents a generic deep network design for scene text recognition. We follow
the prior work of [27] to build these two components.

Specifically, E is a multi-layer fully convolutional network that extracts a
3D feature map f, and T is a two-layer Bidirectional Long-Short Term Mem-
ory (BLSTM) network [11,10] that predicts text by solving a sequence labeling
problem. The feature map f is first transformed to a sequence {f',...,fN} by
flattening N feature segments sliced from f horizontally from left to right. Due
to the translation-invariant property of CNN, each feature frame f™ corresponds
to the n-th local image region which may contain one or part of a text glyph.
With the feature sequence as input, the BLSTM decoder T" analyzes the depen-
dency among the feature frames and predicts a character probability distribution
m" corresponding to each f". The probability space of 7™ includes all English
alphanumeric characters as well as a blank token for word separation. Finally,
the per-frame predictions {n!, ..., 77} are translated into the text prediction ¢
through beam search.

As in [27], the network branch of F and T can be trained by minimizing
the discrepancy between the probability sequence {7!, ..., 77} and the true text
y using the Connectionist Temporal Classification (CTC) technique [9]. CTC
aligns the variable length character sequence of y with the fixed length proba-
bility sequence so that the conditional probability of y can be evaluated based
on {r!,...,7T}. The training loss given by the direct supervision from y can be
summarized as

T
win £, = pyIT(E) = S [[#6"). M)

’ §:B(§)=y t=1

where B is the CTC mapping for sequences of length T', and 4 denotes the ¢-th
token in g.

Feature matching and image generator: Our motivation of utilizing the
clean image X is to learn a good text feature encoder F that is both invariant to
nuisance factors and complete in describing text content. In terms of invariance,
we explicitly minimize the difference between the features extracted from x and
X, since the two images share the same text label y:

min £; = | B(x) - B®)|, (2)

In terms of completeness, we require all information in the clean image X to be
captured by feature E(x). Equivalently, there should exist an image generator
G that can reconstruct X given F(x). To generate images, we construct G as a
deconvolutional network, which is trained jointly with the encoder F to minimize
the ¢1 image reconstruction loss:

inl, =|GE —-X| - 3
win £, = | G(E()) - =, 3)
Adversarial discriminators: As the supervision from the clean image X is

applied on image and feature domains, we thus also explore the idea of genera-
tive adversarial network (GAN) [7] to help improve the distributional similarity
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between G(E(x))/E(x) and their clean counterparts X/F(X). We design an im-
age discriminator Dy and a feature discriminator Dp that try to distinguish
between noise and clean input sources. The two discriminators are both convo-
lutional networks with binary classification outputs, and they are trained against
E and @ in an adversarial minimax style:

minnbalxﬁga = log D;(X|x) + log(1 — D;(G(E(x))|x)), (4)

s

minmax £, = log Dp(E(R)) + log(1 ~ Dr (E(x). (5)

Note that the image discriminator Dy in Eq. (4) is formulated as a conditional
GAN [22] conditioned on the original input image x. This encourages the image
generated by G to not only look realistic but also have the same text content as
X.

With all the above loss terms combined together, we come to the overall
training objective for our synthetically-supervised text recognition model:

EmeG Py Bysy [L(x%,y)], L= MLy+ArLi+AgLg+AgaLgatAraLsas (6)

where all the X’s are weighting coefficients. The effect of each individual loss and
their best combinations will be discussed in the experiments.

4 Experiments

In this section, we evaluate our model on a number of benchmarks for scene text
recognition. The network structure and implementation details are provided in
Sec. 4.1. We present an ablation study in Sec. 4.2 to explore how the performance
of the proposed method is affected by different model configurations, including
different types of clean image X and different combinations of model components.
A comprehensive comparison on general recognition benchmarks is reported in
Sec 4.3. Finally, to further demonstrate the generalization capability of our pro-
posed model, we verify its robustness on two benchmarks created especially for
irregular text recognition in Sec. 4.4.

4.1 Implementation Details

Network Structure: Detailed information of the network structure is pro-
vided in Table.1. For the design of encoder F and text decoder T, we follow the
configuration in [27] to enable a fair comparison. The BLSTM has 256 mem-
ory blocks and 37 output units (26 letters, 10 digits and 1 EOS symbol). The
batch-normalization is applied after the 5 and 6! convolutional layers. Since
the stability of the adversarial training suffers if sparse gradient layers are used,
we replace MaxPool and ReLu with stride convolution and leaky rectified linear
unit respectively. The image generator GG contains a series of fractional-stride
convolutions [2] to generate an image with the same size of the original input.
The discriminators Dy and Dp both contain five fully convolutional layers.
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Encoder

Image Generator

Layer Filter/Stride Output Size| Layer Filter/Stride Output Size
Input - 32 x 100 x 3

Convl 3x3/2x2 16 x 50 x 64| FConv7 2x2/2x1 2x 25x 512
Conv2 3x3/2x2 8x25x128/FConv6 3 x3/2x1 4x25x512
Conv3d 3 x3/1x1 8x25x256FConvb 3x3/1x1 4x25x256
Convd 3x3/2x1 4x25x256|FConvd 3x3/2x1 8x25x 256
Convd 3x3/1x1 4x25x512/FConv3d 3x3/1x1 8x25x256
Conv6 3x3/2x1 2x25x512{FConv2 3 x3/2x2 16 x 50 x 128
Conv7 2x2/2x1 1x25x512|FConvl 3x3/2x2 32x100x3

Feature Discriminator Image Discriminator

Layer Filter/Stride Output Size| Layer Filter/Stride Output Size
ConvFl 1x1/1x1 1x25x256/ConvIl 3x3/2x2 16 x 50 x 64
ConvF2 1x1/1x1 1x25x128 ConvI2 3x3/2x2 8x25x 128
ConvF3 1x1/1x1 1x25x64]|ConvI3 3x3/2x1 4x25x 256

ConvF4 1x1/1x1 1x25x32
ConvF5 1x1/1x1 1x25x1
AvgPool 1x25/1x1 1x1x1

Text Decoder

Convl4 3x3/2x1 2x25x 256
Convl5 2x2/2x1 1x25x1
AvgPool 1 x25/1x1 1x1x1

Layer Hidden Unit Output Size
BLSTM1 256 25 x 512
BLSTM2 256 25 x 512

Output 37 25 x 37

Table 1: Network Structure for Our Scene Text Recognition Algorithm

BN vressse; S IMPRESSES

Original Image Binarized Image Deskewed Image Ideal Image

Fig. 2: Example of different formations of clean images.

Training Details: For all the experiments for scene text recognition, we use the
synthetic dataset (Synth90) released by Jaderberg et al. [14] as the training data.
The dataset contains 8 million images and their corresponding ground truth
text labels. Different types of clean images are leveraged to supervise feature
learning, and their effectiveness is analyzed in Sec. 4.2. Our network is trained
on Synth90 and tested on all other real-world test datasets without any fine-
tuning. Detailed information about real-world test benchmarks is provided in
Sec. 4.3 and 4.4. Following [27], images are resized to 32 x 100 in both training
and testing. The image intensities are linearly scaled to the range of [—1,1].
The batch size is set to 32. All weights are initialized from a zero-mean normal
distribution with a standard deviation of 0.01. The Adam optimizer [19] is used
with a learning rate of 0.002 and momentum 0.5. The parameters in the objective
function (6) are determined by 5-fold cross-validation. For testing, in the process
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of unconstrained text recognition (lexicon-free), we straightforwardly select the
most probable character. While in constrained text recognition, we calculate the
conditional probability distributions for all lexicon words, and take the one with
the highest probability as output result.

4.2 Ablation Study

In this section, we empirically investigate how the performance of the proposed
method is affected by different model settings on the Street View Text dataset
[31]. We study mainly in two aspects: the formation of clean image and the
contribution of network components.

Formation of clean images: One of the main contributions of this paper
is that we explore using clean image as auxiliary supervision to guide feature
learning. To enable a fair comparison with existing works, our training data
are the pre-rendered images from Synth90 [14], with the text labels being the
only accessible rendering parameter. To evaluate the effects of removing different
nuisance factors, besides rendering a clean image without any noise perturbation,
we post-process the original input images to simulate the formation of different
types of “less clean” images, as shown in Fig. 2, in the following ways.

Binarized Images: To remove image color variation, we convert an input
image to gray-scale and then binarize the gray-scale image by thresholding. The
threshold is set to be the mean value of the input image. The output binary
image has 0 (black) for all pixels with intensity less than the mean value and
255 (white) otherwise.

Deskewed Images: To remove text orientation variation, we first detect the
text baseline in the input image using a pre-trained neural network model for
text detection [37]. Then we compute the angle of the text and rotate the text
to the horizontal orientation.

Ideal Images: We render a new image which matches the ground truth text
label while removing all the other nuisance factors. More specifically, we use the
FreeType library [12] to render the corresponding text in black with font style
‘Brevia Black Regular’. The font size is set as 64. The text is arranged horizon-
tally in a clean white background. After rendering, we re-scale the synthesized
image to 32 x 100, which has the same size as the original input image.

The performances of our model using 3 types of clean images are shown in
Table 2, together with the CRNN model [27] trained without using any aux-
iliary clean data as a baseline. To enable a fair comparison, we use the same
model architecture for all the clean image variants, and the configurations of our
encoder and text decoder match those used in [27]. As shown in Table 2, intro-
ducing auxiliary clean data boosts the performance significantly. The reason is
that removing part or all the nuisance factors from the original image makes text
recognition easier. We further observe that leveraging the ideal image leads to
the highest accuracy, which outperforms the baseline by over 6%. We attribute
this improvement to that the ideal image makes the learned feature resilient to
all the nuisance factors. The learned feature is optimized with respect to the text
information while being invariant to other undesired nuisance factors, which is



Synthetically Supervised Feature Learning for Scene Text Recognition 9

Clean Image |Recognition Accuracy (%)
None [27] 80.8
Binarized Images 85.8
Deskewed Images 84.7
Ideal Images 87.0

Table 2: Text recognition accuracy on SVT [31] using different types of clean images.

Model Variant Training Losses Accuracy (%)
CRNN [27] Ly 80.8
Image Generation (L, + Ly 86.1
Adversarial Generation|Ly, + Ly + Lga 84.7
Feature Matching |L, + Ly 85.1
Adversarial Matching |£, + Ly + L5 + Lya 87.0

Table 3: Text recognition accuracies for different variants of our model, compared with
CRNN [27] baseline. The corresponding training losses are shown.

critical for scene text recognition. We use the ideal image as auxiliary supervision
throughout the rest of the experiments.

Architectural variants: We conduct a detailed ablation study by examin-
ing the effectiveness of each proposed component in our network structure. We
evaluate and compare each of the following module configurations:

CRNN model [27]: built with components F and T, and trained only with
a CTC loss, corresponding to £, in our framework.

Image Generation: built with F, T', and G, and trained with £, and £,
losses.

Adversarial Generation: built with £, T, G and Dy, and trained with
Ly, Ly and Ly,. Previous approaches have found it to be beneficial to mix the
GAN objective with the ¢; loss [13]. The encoder and the image generator work
cooperatively to compete with the image discriminator.

Feature Matching: built with £ and 7', and trained with £, and L.

Adversarial Matching: built with £, T, G and D, and trained with £,,
Ly, L; and L¢,. The encoder not only tries to make the features of the original
input and its corresponding clean image pair similar, but also to fool the feature
discriminator. The adversarial game is conducted between the encoder and the
feature discriminator. We also impose ¢ reconstruction loss at pixel level.

The performances of the above 5 models are listed in Table 3. The CRNN
model [27] serves as a baseline in the comparison. The 4 different variants of
the proposed model all boost recognition performance compared to the baseline.
Adding either feature consistency loss £y or image generation loss £, improves
the performance by over 5%, which verifies the effectiveness of leveraging the
clean data as auxiliary supervision in feature learning. Also, it is observed that
the image generation loss £, contributes to the most performance gain as an in-
dividual module. It indicates that reconstructing the clean image, or preserving
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L1only L1+Adversarial
Input Image  Ideal Image |Generated Image Prediction/GT |Generated Image Confidence Score Prediction/GT
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Fig. 3: Examples showing the generated images and their corresponding confidence
scores. The first column shows the original input images and their paired ‘clean’ im-
ages. The middle column shows the generated images by using L; loss only and the
corresponding prediction. The right column shows the generated images using L loss
with adversarial training, the corresponding confidence score and predictions. The con-
fidence score corresponds to 25 local image regions which may contain one or part of
a text glyph horizontally from left to right. The confidence score is close to 1 when it
looks realistic and to 0 otherwise.

the text content, is the most important task when learning the feature represen-
tation.

Another interesting observation is that compared with image generation us-
ing the £, loss only, adding the adversarial training in the image generation
does not bring a significant improvement to the scene recognition performance.
One possible reason may be revealed in the second example in Fig. 3, which
has ground truth label ‘coffee’. Although the image generated by the adversarial
training looks more realistic than using £, alone, as shown in Fig. 3, it inter-
prets the last second character as ’I” instead of ’e’, which leads to an incorrect
prediction. This misunderstanding can be observed in both the generated image
and the final prediction. Although using the image discriminator degrades the
performance a little, it does provide us with a new possibility. With the help of
the image discriminator, we can obtain a confidence score of the final prediction,
which indicates the quality of generated images. The confidence score is close
to 1 when a generated image looks realistic and to 0 otherwise. It is plotted
in the last column of Fig. 3 for 25 local image regions from left to right. This
confidence score has a correlation with character recognition accuracy and may
be used in the lexicon-based word search. Since the image discriminator does not
provide noticeable improvement in the recognition performance, in the following
experiments, we disable the image discriminator unless otherwise specified.

On the other hand, adding the feature discriminator and adversarial training
in the feature domain further boosts the recognition accuracy to 87%. It means
that the adversarial training between the encoder and feature discriminator acts
as a critical role in aligning the distribution between the features of the original
input image and the corresponding clean image. It makes the learned feature
representation more exclusive or invariant to other nuisance factors.
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4.3 Results and Comparisons on General Benchmarks

We evaluate our proposed method on the benchmarks that are designed for gen-
eral scene text recognition, which mostly contain regular text although irregular
text occasionally exists. The benchmark datasets are:

— ITIT 5K-Words|[23]: (IIIT5K) contains 3000 cropped word images in its
test set, which is collected from the Internet. Each image specifies a 50-word
lexicon and a lk-word lexicon.

— Street View Text [31]: (SVT) contains 647 test images, which are cropped
from 249 Google Street View images. Many images in SVT suffer from severe
noise and blur or have a very low resolution. Each image is associated with
a b0-word lexicon.

— ICDAR 2003 [21]: (IC03) contains 251 scene images labeled with text
bounding boxes. For fair comparison [31], we discard the images contain
non-alphanumeric characters or those having less than three characters. The
resulting dataset contains 867 cropped images. Each cropped image is asso-
ciated with a 50-word lexicon defined by Wang et al. [31] and a full lexicon
which combines all lexicon words.

— ICDAR 2013 [18]: (IC13) inherits most of its samples from IC03. After
filtering samples as done in IC03, the dataset contains 857 samples. No
lexicon is specified.

In Table 4, we report the performances of our synthetically-supervised fea-
ture learning model and compare them with 16 existing methods on the general
text recognition benchmarks. On unconstrained recognition tasks (recognizing
without a lexicon), our method shows a significant improvement in all cases by
using the clean image as supervision at both pixel level and at feature level in
a generative way. More specifically, since CRNN [27] and our proposed method
share the same encoder and text decoder network structure, thus it can serve as
a strong baseline for fair comparison without adopting any auxiliary clean im-
age for supervision. Our method outperforms CRNN by around 7% on average.
This demonstrates the effectiveness and superiority of leveraging the auxiliary
clean image. On constrained recognition tasks, we use a standard lexicon search-
ing algorithm as in [27], and also achieve state-of-the-art or highly competitive
results.

Compared with the method proposed in FAN [4], our method achieves com-
petitive accuracies without using deep resent-based encoder or any attention
mechanism as is done in FAN [4]. In addition, in the lexicon-free setting, our
method significantly outperforms FAN on IIIT5K, SVT and performs compara-
bly to the performance on IC03 and IC13. From our observations, we found that
IIT5K and SVT contains more irregular text, especially curved text and has
very low resolution images. Our method has an advantage in dealing with irreg-
ular text which have a large variance in their appearance. This may be because
the learned text representation in our proposed method is largely invariant of the
other nuisance factors, thus makes different text images are maximally distin-
guishable. In order to further verify the robustness and generalization capability
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Method IIIT5K SVT 1C03 IC13
50 [ 1K [None 50 [None 50 [Full[None None
ABBEY |[31] 24.3| - - [|35.0/ - ||56.0/55.0| - -
SYNTH+PLEX [31]|| - - - ||b7.0| - ||76.0/62.0| - -
Mishra et al. [10] ||64.1|57.5| - |/73.2| - |81.8(67.8| - -
Wang et al. [32] - - - ||70.01 - ||90.0|84.0| - -
wDTW [6] - - - ||77.3) - [|89.7| - - -
PhotoOCR (3] - - - 1/90.4|78.0| - - - || 87.6
Almazan et al. [1] [[91.2]82.1| - |/89.2| - - - - -
Strokelets [33] 80.2169.3| - ||75.9| - ||88.5]|80.3| - -
Su and Lu [29] - - - [|83.0] - |92.0/82.0| - -
Gordo [8] 93.3(86.6| - [/91.8| - - - - -
Jaderberg et al. [17]|/97.1|92.7| - |[95.4|80.7 ||98.7]98.6|93.1 || 90.8
Jaderberg et al. [16]|/95.5|89.6| - |[93.2|71.7(/97.8]97.0|89.6 || 81.8
CRNN [27] 97.6(94.4| 78.21/96.4| 80.8 ||98.7|97.6| 89.4 || 86.7
RARE (28] 96.2(93.8(81.9{/95.5|81.9(/98.3]96.2|90.1 || 88.6
R?AM [20] 96.8(94.4| 78.4 (96.3| 80.7 ||97.9|97.0| 88.7 || 90.0
FAN [4] 99.3|97.5|87.4 ||97.1| 85.9 |99.2|97.3| 94.2 || 93.9
Ours [97.3]96.1]89.4][96.8[87.1][98.1[97.5[94.7[[94.0

Table 4: Recognition Rates (%) on standard scene text recognition benchmarks. ‘50’
and ‘1k’ refer to the lexicon sizes, ‘Full’ indicates the combined lexicon of all images in
the benchmarks, and ‘None’ means unconstrained lexicon-free. Our method achieves
the state-of-the-art performance across different benchmarks and significantly outper-
forms the state-of-the-art in the lexicon-free category.

of our proposed method, we provide more testing of our method on challenging
irregular text recognition tasks in 4.4.

4.4 Results and Comparisons on Irregular Text Benchmarks

In this section, we evaluate our proposed algorithm on the irregular text sce-
narios to verify its effectiveness. We use the same model trained on the Synth90
dataset without fine-tuning. All models are evaluated without a lexicon. The
two standard irregular text benchmark datasets are SVT-Perspective [25] and
CUTESO [26].

SVT-Perspective: (SVT-Perspective) contains 639 cropped images for test-
ing, which is specially designed for evaluating the performance of perspective text
recognition. Test samples are selected from side view angles in Google Street
View. Thus most of them are heavily deformed by perspective distortion.

CUTERO0: (CUTER0) contains 288 cropped word images for testing, which is
collected from 80 high-resolution images taken in the natural scene. This dataset
is specially designed for evaluating curved text recognition.

Table 5 summarizes the recognition performance on the SVT-Perspective
and CUTESO datasets. In comparison with other existing methods, which use
the same training set, our method outperforms them by a large margin in all



Synthetically Supervised Feature Learning for Scene Text Recognition 13

Method SVT-Perspective|Curved Text
Jaderberg et al. [17] - 42.7
CRNN [27] 66.8 54.9
RARE [2§] 71.8 59.2
Ours 73.9 62.5

Table 5: Recognition Rates (%) on Irregular Text Recognition benchmarks.

cases. Furthermore, recall the results in Table 4, compared with the baseline
CRNN model, on SVT-Perspective our proposed method outperforms CRNN
by an even larger margin than it does for SVT benchmark. The reason is that
the SVT-Perspetive dataset mainly consists of the perspective text, which is
more challenging and inappropriate for direct recognition. Our synthetically-
supervised feature learning can significantly alleviate this problem.

It worth noting that we achieve a significant improvement over RARE [28],
which is a method designed specifically for irregular text. Our proposed model
is simple and effective to address various kinds of irregular text in a unified way
by learning from auxiliary ‘clean’ image. In addition, our methods does not need
to detect the fiducial points and rectify the images before the image recognition
procedure as is done in RARE. This further indicates that the learned text
feature in our model is more robust to the variance of nuisance factors, i.e., the
curved shape or the perspective angles. We also present some visual examples to
compare the quality of the rectified images by RARE and generated image by our
proposed method in Fig. 4. For given input examples listed in the first column,
the second column represents the rectified images achieved by RARE, and the
third column shows the generated images obtained by our image generator. We
observe that our generated image is closer to a canonical view of the original
input image, which eliminates off most of the appearance variance of the nuisance
factors. In contrast to the RARE method, we do not use the generated image
as a pre-processed step before the sequential text recognition. The generation of
‘clean’ image only aims to guide the feature learning.

In Fig. 5, we present some interesting examples to show some challenging
and failure cases. Fig. 5(a) shows some challenging examples our model makes a
correct prediction, which shows that our model is robust to the undesired occlu-
sion, background variation, geometric deformation in both the image generation
and text decoding task. Fig. 5(b) demonstrates some failure cases, which reveals
that the prediction accuracy is always linked to the quality of the generated
image closely. For instance, for the word ‘phil’, the second character in our gen-
erated image is similar to the character ‘i’; which is misclassified to ‘i’ in the
prediction. For the input image ‘i8’, we predict its label to ‘18’, which shows
our model implicitly understands that numbers always appear together, which
might comes from the bias in the training samples. In most cases, the predict
result is consistent with the characters appears in the generated image. Most
misclassifed samples contain a short text or has a very low resolution.
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Fig. 4: Comparison of image rectification effects using our generative model versus the
transformation model of RARE [28]. Our model correctly recognizes all these challeng-
ing examples.
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Fig. 5: Examples showing the images our model generated and the recognition results.
In each sub-figure, the left column is the input images; the middle column is the
generated image; the right column is the recognized text and the ground truth text.
Blue and red characters are correctly and mistakenly recognized characters.

5 Conclusions

We have presented a novel algorithm for scene text recognition. The core novel-
ties of our method are the use of “clean” images that are readily available from
the synthetic data generation process and a novel multi-task network with an
encoder-generator-discriminator-decoder architecture that guides image feature
learning by using clean images. We show that our method significantly outper-
forms the state-of-the-art methods on standard scene text recognition bench-
marks. Furthermore, we show that without explicit handling, our method works
on challenging cases where input images contain severe geometric distortion,
such as text on a curved path. Future work might include studies on how differ-
ent clean images may affect the performance of the recognition algorithm, how
to use other parameters of the data generation process, such as font, as auxiliary
data for feature learning, and how to train end-to-end systems that combine
both text detection and recognition in this framework.
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